

LXI lass C certified

Available frequncy ranges

N9030A-503 3 Hz to 3.6 GHz
N9030A-508 3 Hz to 8.4 GHz
N9030A-513 3 Hz to 13.6 GHz
N9030A-526 3 Hz to 26.5 GHz
N9030A-543* 3 Hz to 43 GHz
N9030A-544* 3 Hz to 44 GHz
N9030A-550* 3 Hz to 50 GHz
*Specifications associated with mmW Options 543, 544, or 550,
are either preliminary or not yet available.

Agilent Technologies

Table of Contents

Definitions and Conditions 3
Frequency and Time Specifications 4
Amplitude Accuracy and
Range Specifications 6
Dynamic Range Specifications 8
PowerSuite Measurement Specifications 13
General Specifications 14
Inputs and Outputs 16
I/Q Analyzer 18
I/Q Analyzer - Option B25. 19
I/Q Analyzer - Option B40 20
I/Q Analyzer - Option B1X 22
Other Optional Outputs 24
Related Literature 25

Agilent's future-ready PXA signal analyzer is the evolutionary replacement for your current highperformance analyzer. It helps you sustain past achievements, enhance current designs and accelerate future innovations.

Its performance, flexibility, capability and compatibility enable you to address demanding applications in aerospace, defense, commercial communications and more.

- Reveal new levels of signal detail with outstanding RF performance
- Increase test throughput and protect your system investments
- Refresh legacy systems with a highly compatible replacement

Definitions and Conditions

Specifications describe the performance of parameters covered by the product warranty and apply to temperature ranges 0 to $55^{\circ} \mathrm{C}$, unless otherwise noted.

95th percentile values indicate the breadth of the population (approx. 2б) of performance tolerances expected to be met in 95 percent of the cases with a 95 percent confidence, for any ambient temperature in the range of 20 to $30^{\circ} \mathrm{C}$. In addition to the statistical observations of a sample of instruments, these values include the effects of the uncertainties of external calibration references. These values are not warranted. These values are updated occasionally if a significant change in the statistically observed behavior of production instruments is observed.

Typical describes additional product performance information that is not covered by the product warranty. It is performance beyond specifications that 80 percent of the units exhibit with a 95 percent confidence level over the temperature range 20 to $30^{\circ} \mathrm{C}$. Typical performance does not include measurement uncertainty.

Nominal values indicate expected performance, or describe product performance that is useful in the application of the product, but is not covered by the product warranty.

The analyzer will meet its specifications when:

- The analyzer is within its calibration cycle.
- Under auto couple control, except that Auto Sweep Time Rules = Accy.
- For signal frequencies $<10 \mathrm{MHz}$, DC coupling applied.
- The analyzer has been stored at an ambient temperature within the allowed operating range for at least two hours before being turned on, if it had previously been stored at a temperature range inside the allowed storage range but outside the allowed operating range.
- The analyzer has been turned on at least 30 minutes with Auto Align set to normal, or if Auto Align is set to off or partial, alignments must have been run recently enough to prevent an Alert message. If the Alert condition is changed from Time and Temperature to one of the disabled duration choices, the analyzer may fail to meet specifications without informing the user.

This PXA signal analyzer data sheet is a summary of the complete specifications and conditions. The complete PXA Signal Analyzer Specification Guide can be obtained from the web at:
www.agilent.com/find/pxa_specifications
Specifications associated with Option 543, 544, or 550 are either preliminary or not yet available.

Frequency and Time Specifications

Frequency range	DC coupled	AC coupled
Option 503	3 Hz to 3.6 GHz	10 MHz to 3.6 GHz
Option 508	3 Hz to 8.4 GHz	10 MHz to 8.4 GHz
Option 513	3 Hz to 13.6 GHz	10 MHz to 13.6 GHz
Option 526	3 Hz to 26.5 GHz	10 MHz to 26.5 GHz
Option 543	3 Hz to 43 GHz	
Option 544	3 Hz to 44 GHz	
Option 550	3 Hz to 50 GHz	
Band LO multiple (N)		
$0 \quad 1$	3 Hz to 3.6 GHz	
1 1	3.5 to 8.4 GHz	
2	8.3 to 13.6 GHz	
$3 \quad 2$	13.5 to 17.1 GHz	
4	17 to 26.5 GHz	
$5 \quad 4$	26.4 to 31.15 GHz	
6 8	31 to 50 GHz	
Precision frequency reference		
Accuracy	\pm [(time since last adjustment x aging rate) + temperature stability + calibration accuracy]	
Aging rate	$\begin{aligned} & \pm 1 \times 10^{-7} / \text { year } \\ & \pm 1.5 \times 10^{-7} / 2 \text { years } \end{aligned}$	
Temperature stability $20 \text { to } 30^{\circ} \mathrm{C}$ Full temperature range	$\begin{aligned} & \pm 1.5 \times 10^{-8} \\ & \pm 5 \times 10^{-8} \end{aligned}$	
Achievable initial calibration accuracy	$\pm 4 \times 10^{-8}$	
Example frequency reference accuracy 1 year after last adjustment 20 to $30^{\circ} \mathrm{C}$	$\begin{aligned} & = \pm\left(1 \times 1 \times 10^{-7}+1.5 \times 10^{-8}+4 \times 10^{-8}\right) \\ & = \pm 1.55 \times 10^{-7} \end{aligned}$	
Residual FM Center frequency $=1 \mathrm{GHz}$ 10 Hz RBW, 10 Hz VBW	$\leq(0.25 \mathrm{~Hz} \times \mathrm{N}) \mathrm{p}-\mathrm{p}$ in 20 ms nominal See band table above for N (LO multiple)	
Frequency readout accuracy (start, stop, center, marker)		
\pm (marker frequency x frequency reference accuracy $+0.10 \% \mathrm{x}$ span $+5 \% \times \mathrm{RBW}+2 \mathrm{~Hz}+0.5 \times$ horizontal resolution ${ }^{1}$)		
Marker frequency counter		
Accuracy	\pm (marker frequency x frequency reference accuracy +0.100 Hz)	
Delta counter accuracy	\pm (delta frequency x frequency reference accuracy +0.141 Hz)	
Counter resolution	0.001 Hz	
Frequency span (FFT and swept mode)		
Range	0 Hz (zero span), 10 Hz to maximum frequency of instrument	
Resolution	2 Hz	
Accuracy Swept FFT	$\begin{aligned} & \pm(0.1 \% \text { x span }+ \text { horizontal resolution }) \\ & \pm(0.1 \% \text { x span }+ \text { horizontal resolution }) \end{aligned}$	

[^0]

Amplitude Accuracy and Range Specifications

Amplitude range			
Measurement range	Displayed average noise level (DANL) to maximum safe input level		
Input attenuator range (3 Hz to 50 GHz)	0 to 70 dB in 2 dB steps		
Electronic attenuator (Option EA3)			
Frequency range	3 Hz to 3.6 GHz		
Attenuation range Electronic attenuator range Full attenuation range (mechanical + electronic)	0 to $24 \mathrm{~dB}, 1 \mathrm{~dB}$ steps 0 to $94 \mathrm{~dB}, 1 \mathrm{~dB}$ steps		
Maximum safe input level			
Average total power (with and without preamp)	+30 dBm (1 W)		
Peak pulse power	$<10 \mu \mathrm{~s}$ pulse width, $<1 \%$ duty cycle $+50 \mathrm{dBm}(100 \mathrm{~W})$ and input attenuation $\geq 30 \mathrm{~dB}$		
DC volts DC coupled AC coupled	$\begin{aligned} & \pm 0.2 \mathrm{Vdc} \\ & \pm 100 \mathrm{Vdc} \end{aligned}$		
Display range			
Log scale	0.1 to $1 \mathrm{~dB} /$ division in 0.1 dB steps 1 to $20 \mathrm{~dB} /$ division in 1 dB steps (10 display divisions)		
Linear scale	10 divisions		
Scale units	dBm, dBmV, dB V , dBmA, dB $\mu \mathrm{A}, \mathrm{V}, \mathrm{W}, \mathrm{A}$		
Frequency response		Specification	95th percentile ($\sim 2 \sigma$)
(10 dB input attenuation, 20 to $30^{\circ} \mathrm{C}$, preselector centering applied at 3.6 GHz and above)			
	3 kHz to 10 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 22.0 GHz 22.0 to 26.5 GHz	$\begin{aligned} & \pm 0.46 \mathrm{~dB} \\ & \pm 0.35 \mathrm{~dB} \\ & \pm 1.5 \mathrm{~dB} \\ & \pm 2.0 \mathrm{~dB} \\ & \pm 2.0 \mathrm{~dB} \\ & \pm 2.5 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 0.19 \mathrm{~dB} \\ & \pm 0.16 \mathrm{~dB} \\ & \pm 0.39 \mathrm{~dB} \\ & \pm 0.45 \mathrm{~dB} \\ & \pm 0.62 \mathrm{~dB} \\ & \pm 0.82 \mathrm{~dB} \end{aligned}$
Preamp on (Option P03, P08, P13, P26)	9 to 100 kHz		$\pm 0.36 \mathrm{~dB}$
(0 dB attenuation)	100 kHz to 50 GHz 50 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 22.0 GHz 22.0 to 26.5 GHz	$\begin{aligned} & \pm 0.68 \mathrm{~dB} \\ & \pm 0.55 \mathrm{~dB} \\ & \pm 2.0 \mathrm{~dB} \\ & \pm 2.3 \mathrm{~dB} \\ & \pm 2.5 \mathrm{~dB} \\ & \pm 3.0 \mathrm{~dB} \\ & \pm 3.5 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 0.26 \mathrm{~dB} \\ & \pm 0.28 \mathrm{~dB} \\ & \pm 0.64 \mathrm{~dB} \\ & \pm 0.76 \mathrm{~dB} \\ & \pm 0.95 \mathrm{~dB} \\ & \pm 1.41 \mathrm{~dB} \\ & \pm 1.61 \mathrm{~dB} \end{aligned}$
Input attenuation switching uncertainty		Specifications	Additional information
Relative to 10 dB and preamp off			
At 50 MHz (reference frequency)	attenuation 12 to 40 dB attenuation 2 to 8 dB attenuation 0 dB	$\begin{aligned} & \pm 0.14 \mathrm{~dB} \\ & \pm 0.18 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 0.03 \mathrm{~dB} \text { typical } \\ & \pm 0.05 \mathrm{~dB} \text { typical } \\ & \pm 0.05 \mathrm{~dB} \text { nominal } \end{aligned}$
$\begin{aligned} & \text { attenuation >2 dB } \\ & 3 \mathrm{~Hz} \text { to } 3.6 \mathrm{GHz} \\ & 3.5 \text { to } 8.4 \mathrm{GHz} \\ & 8.3 \text { to } 13.6 \mathrm{GHz} \\ & 13.5 \text { to } 26.5 \mathrm{GHz} \end{aligned}$			$\begin{aligned} & \pm 0.3 \mathrm{~dB} \text { nominal } \\ & \pm 0.5 \mathrm{~dB} \text { nominal } \\ & \pm 0.7 \mathrm{~dB} \text { nominal } \\ & \pm 0.7 \mathrm{~dB} \text { nominal } \end{aligned}$

Total absolute amplitude accuracy		
(10 dB attenuation, 20 to $30^{\circ} \mathrm{C}, 1 \mathrm{~Hz} \leq \mathrm{RBW} \leq 1 \mathrm{MHz}$, input signal -10 to -50 dBm , all settings auto-coupled except Auto Swp Time = Accy, any reference level, any scale, $\sigma=$ nominal standard deviation)		
	At 50 MHz At all frequencies 10 Hz to 3.6 GHz	$\begin{aligned} & \pm 0.24 \mathrm{~dB} \\ & \pm(0.24 \mathrm{~dB}+\text { frequency response }) \\ & \pm 0.19 \mathrm{~dB} \text { (95th Percentile approx. } 2 \sigma \text {) } \end{aligned}$
Preamp on (Option P03, P08, P13, P26)	At all frequencies	\pm (0.36 dB + frequency response)
Input voltage standing wave ratio (VSWR) ($\geq 10 \mathrm{~dB}$ input attenuation)		
	50 MHz 10 MHz to 3.6 GHz 3.6 to 8.4 GHz 8.4 to 13.6 GHz 13.6 to 26.5 GHz	$\begin{aligned} & <1.07: 1 \text { nominal } \\ & <1.2: 1 \text { nominal } \\ & <1.5: 1 \text { nominal } \\ & <\text { 1.6:1 nominal } \\ & \text { < 1.9:1 nominal } \end{aligned}$
Preamp on (Option P03. P08, P13, P26)	$\begin{aligned} & 10 \mathrm{MHz} \text { to } 3.6 \mathrm{GHz} \\ & 3.6 \text { to } 8.4 \mathrm{GHz} \\ & 8.4 \text { to } 13.6 \mathrm{GHz} \\ & 13.6 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	< 1.7:1 nominal < 1.8:1 nominal < 2.0:1 nominal < 2.0:1 nominal
Resolution bandwidth switching uncertainty (referenced to 30 kHz RBW)		
1 Hz to 1.5 MHz RBW	$\pm 0.03 \mathrm{~dB}$	
1.6 MHz to 2.7 MHz RBW	$\pm 0.05 \mathrm{~dB}$	
3 MHz RBW	$\pm 0.10 \mathrm{~dB}$	
4, 5, 6, 8 MHz RBW	$\pm 0.30 \mathrm{~dB}$	
Reference level		
Range Log scale Linear scale	-170 to +30 dBm in 0.01 dB steps 707 pV to 7.07 V with $0.11 \%(0.01 \mathrm{~dB})$ resolution	
Accuracy	0 dB	
Display scale switching uncertainty		
Switching between linear and log	0 dB	
Log scale/div switching	0 dB	
Display scale fidelity		
Between - 10 dBm and -80 dBm input mixer level	$\pm 0.10 \mathrm{~dB}$ total	± 0.04 dB typical
Below - 18 dBm input mixer level	$\pm 0.07 \mathrm{~dB}$	$\pm 0.02 \mathrm{~dB}$ typical
Trace detectors		
Normal, peak, sample, negative peak, log power average, RMS average, and voltage average		
Preamplifier		
Frequency range ${ }^{1}$	Option P03 Option P08 Option P13 Option P26 Option P43 Option P44 Option P50	9 kHz to 3.6 GHz 9 kHz to 8.4 GHz 9 kHz to 13.6 GHz 9 kHz to 26.5 GHz 9 kHz to 43 GHz 9 kHz to 44 GHz 9 kHz to 50 GHz
Gain	9 kHz to 3.6 GHz 3.6 to 26.5 GHz 26.5 to 50 GHz	+20 dB nominal +35 dB nominal +40 dB nominal

[^1]
Dynamic Range Specifications

1 dB gain compression (two-tone)		Maximum power at input mixer	
At 1 kHz RBW with 100 kHz tone spacing, 20 to $30^{\circ} \mathrm{C}$			
	20 to 40 MHz 40 to 200 MHz 200 MHz to 3.6 GHz 3.6 to 16 GHz 16 to 26.5 GHz	$\begin{aligned} & -3 \mathrm{dBm} \\ & +1 \mathrm{dBm} \\ & +3 \mathrm{dBm} \\ & +1 \mathrm{dBm} \\ & -1 \mathrm{dBm} \end{aligned}$	0 dBm typical +3 dBm typical +5 dBm typical +4 dBm typical +2 dBm typical
Preamp on (Option P03, P08, P13, P26)	$\begin{aligned} & 10 \mathrm{MHz} \text { to } 3.6 \mathrm{GHz} \\ & 3.6 \text { to } 26.5 \mathrm{GHz} \\ & \text { Tone spacing } 100 \mathrm{kHz} \text { to } 20 \mathrm{MHz} \\ & \text { Tone spacing > } 70 \mathrm{MHz} \end{aligned}$		-14 dBm nominal -28dBm nominal -10 dBm nominal
Displayed average noise level (DANL)			
(Input terminated, sample or average detector, averaging type $=$ Log, 0 dB input attenuation, IF Gain $=$ High, 20 to $30^{\circ} \mathrm{C}$)			
RF/MW (Option 503, 508, 513, 526)		Normal ${ }^{1 / L N P ~ e n a b l e d ~}{ }^{2}$	Normal ${ }^{1 / L N P ~ e n a b l e d ~}{ }^{2}$
Preamp off	3 Hz to 9 kHz 9 to 100 kHz 100 kHz to 1 MHz 1 to 10 MHz 10 MHz to 1.2 GHz 1.2 to 2.1 GHz 2.1 to 3.0 GHz 3.0 to 3.6 GHz 3.5 to 4.2 GHz 4.2 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 16.9 GHz 16.9 to 20.0 GHz 20.0 to 26.5 GHz	$\begin{aligned} & -146 \mathrm{dBm} \\ & -150 \mathrm{dBm} \\ & -155 \mathrm{dBm} \\ & -155 \mathrm{dBm} \\ & -153 \mathrm{dBm} \\ & -152 \mathrm{dBm} \\ & -151 \mathrm{dBm} \\ & -147 \mathrm{dBm} /-153 \mathrm{dBm} \\ & -150 \mathrm{dBm} /-155 \mathrm{dBm} \\ & -149 \mathrm{dBm} /-155 \mathrm{dBm} \\ & -145 \mathrm{dBm} /-152 \mathrm{dBm} \\ & -143 \mathrm{dBm} /-151 \mathrm{dBm} \\ & -137 \mathrm{dBm} /-150 \mathrm{dBm} \end{aligned}$	$-100 \mathrm{dBm} /$ NA typical ${ }^{2}$ -152 dBm/NA typical $-156 \mathrm{dBm} /$ NA typical $-158 \mathrm{dBm} /$ NA typical - $157 \mathrm{dBm} /$ NA typical - $155 \mathrm{dBm} /$ NA typical -154 dBm/NA typical -153 dBm/NA typical $-150 \mathrm{dBm} /-156 \mathrm{dBm}$ typical $-152 \mathrm{dBm} /-157 \mathrm{dBm}$ typical $-151 \mathrm{dBm} /-157 \mathrm{dBm}$ typical $-147 \mathrm{dBm} /-155 \mathrm{dBm}$ typical $-145 \mathrm{dBm} /-153 \mathrm{dBm}$ typical $-140 \mathrm{dBm} /-152 \mathrm{dBm}$ typical
$\begin{aligned} & \text { Preamp on } \\ & \text { Option P03, P08, P13, P26 } \end{aligned}$	100 to 200 kHz 200 to 500 kHz 0.5 to 1 MHz	-157 dBm/NA $-160 \mathrm{dBm} / \mathrm{NA}$ -164 dBm/NA	-160 dBm/NA typical - $163 \mathrm{dBm} /$ NA typical $-166 \mathrm{dBm} /$ NA typical
Option P03, P08, P13, P26 Option P03, P08, P13, P26 Option P03, P08, P13, P26 Option P08, P13, P26 ${ }^{3}$ Option P13, P26 ${ }^{3}$ Option P26 ${ }^{3}$ Option P26 ${ }^{3}$ Option P26 ${ }^{3}$	1 to 10 MHz 10 MHz to 2.1 GHz 2.1 to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 16.9 GHz 16.9 to 20.0 GHz 20.0 to 26.5 GHz	$\begin{aligned} & -164 \mathrm{dBm} / \mathrm{NA} \\ & -165 \mathrm{dBm} / \mathrm{NA} \\ & -163 \mathrm{dBm} / \mathrm{NA} \\ & -164 \mathrm{dBm} / \mathrm{NA} \\ & -163 \mathrm{dBm} / \mathrm{NA} \\ & -161 \mathrm{dBm} / \mathrm{NA} \\ & -159 \mathrm{dBm} / \mathrm{NA} \\ & -155 \mathrm{dBm} / \mathrm{NA} \end{aligned}$	- 167 dBm/NA typical $-166 \mathrm{dBm} /$ NA typical -164 dBm/NA typical $-166 \mathrm{dBm} /$ NA typical $-165 \mathrm{dBm} /$ NA typical - $162 \mathrm{dBm} /$ NA typical -161dBm/NA typical $-157 \mathrm{dBm} /$ NA typical
DANL with Noise Floor Extension (NFE) on		Improvement @ 95th percentile	
RF/MW (Option 503, 508, 513, 526)		Preamp Off	Preamp On
Band $0, \mathrm{f}>20 \mathrm{MHz}$ Band 1 Band 2 Band 3 Band 4		$\begin{aligned} & 8.5 \mathrm{~dB} \\ & 4 \mathrm{~dB} \\ & 7.5 \mathrm{~dB} \\ & 7 \mathrm{~dB} \\ & 6 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 8.5 \mathrm{~dB} \\ & 7 \mathrm{~dB} \\ & 7 \mathrm{~dB} \\ & 7.5 \mathrm{~dB} \\ & 6 \mathrm{~dB} \end{aligned}$
Examples of effective DANL Frequency 20 to $30^{\circ} \mathrm{C}$	Preamp Off Preamp On		
Mid-Band 0 (1.8 GHz) Mid-Band 1 (5.95 GHz) Mid-Band 2 (10.95 GHz) Mid-Band 3 (15.3 GHz) Mid-Band 4 (21.75 GHz)	-163 dBm -172 dBm -158 dBm -172 dBm -157 dBm -170 dBm -153 dBm -166 dBm -145 dBm -162 dBm		
With the NFE (Noise Floor Extension) "Off LNP (Low Noise Path) requires option LN At higher frequency bands (beyond 3.6 GH	Preamp "On" supersedes	d". LNP cannot operate simulta	ly with preamp.

Millimeter-Wave (Option 543, 544, 550; preliminary specs)		Normal ${ }^{1 / L N P ~ e n a b l e d ~}{ }^{2}$	Normal ${ }^{1 / L N P ~ e n a b l e d ~}{ }^{2}$
Preamp off	3 Hz to 9 kHz 9 to 100 kHz 100 kHz to 1 MHz 1 MHz to 1.2 GHz 1.2 to 2.1 GHz 2.1 to 3 GHz 3 to 3.6 GHZ 3.5 to 4.2 GHz 4.2 to 6.6 GHz 6.6 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 14 GHz 14 to 17 GHz 17 to 22.5 GHz 22.5 to 26.5 GHz 26.4 to 34 GHz 33.9 to 44 GHz 44 to 49 GHz 49 to 50 GHz	$-146 \mathrm{dBm} / \mathrm{NA}$ $-150 \mathrm{dBm} / \mathrm{NA}$ $-155 \mathrm{dBm} / \mathrm{NA}$ $-153 \mathrm{dBm} / \mathrm{NA}$ - $152 \mathrm{dBm} / \mathrm{NA}$ $-151 \mathrm{dBm} / \mathrm{NA}$ $-143 \mathrm{dBm} /-151 \mathrm{dBm}$ $-145 \mathrm{dBm} /-152 \mathrm{dBm}$ $-147 \mathrm{dBm} /-154 \mathrm{dBm}$ $-147 \mathrm{dBm} /-154 \mathrm{dBm}$ $-144 \mathrm{dBm} /-150 \mathrm{dBm}$ $-145 \mathrm{dBm} /-151 \mathrm{dBm}$ $-143 \mathrm{dBm} /-150 \mathrm{dBm}$ $-139 \mathrm{dBm} /-146 \mathrm{dBm}$ $-139 \mathrm{dBm} /-146 \mathrm{dBm}$ $-134 \mathrm{dBm} /-142 \mathrm{dBm}$ $-132 \mathrm{dBm} /-138 \mathrm{dBm}$ $-129 \mathrm{dBm} /-138 \mathrm{dBm}$	-100 dBm/NA nominal
$\begin{aligned} & \text { Preamp on } \\ & \text { Option P03, P08, P13, P26, P43, P44, P50³ } \end{aligned}$	100 to 200 kHz 200 to 500 kHz 0.5 to 10 MHz 10 MHz to 2.1 GHz 2.1 to 3.6 GHz	$\begin{aligned} & -157 \mathrm{dBm} / \mathrm{NA} \\ & -160 \mathrm{dBm} / \mathrm{NA} \\ & -164 \mathrm{dBm} / \mathrm{NA} \\ & -165 \mathrm{dBm} / \mathrm{NA} \\ & -163 \mathrm{dBm} / \mathrm{NA} \end{aligned}$	
Option P08, P13, P26, P43, P44, P50 ${ }^{3}$ Option P13, P26, P43, P44, P50 ${ }^{3}$ Option P26, P43, P44, P50 ${ }^{3}$	3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 20 GHz 20 to 26.5 GHz	$\begin{aligned} & \hline-161 \mathrm{dBm} / \mathrm{NA} \\ & -161 \mathrm{dBm} / \mathrm{NA} \\ & -161 \mathrm{dBm} / \mathrm{NA} \\ & -159 \mathrm{dBm} / \mathrm{NA} \end{aligned}$	
Option P43, P44, P50 ${ }^{3}$	$\begin{aligned} & 26.4 \text { to } 32 \mathrm{GHz} \\ & 32 \text { to } 34 \mathrm{GHz} \\ & 33.9 \text { to } 40 \mathrm{GHz} \\ & 40 \text { to } 43 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & -157 \mathrm{dBm} / \mathrm{NA} \\ & -156 \mathrm{dBm} / \mathrm{NA} \\ & -153 \mathrm{dBm} / \mathrm{NA} \\ & -151 \mathrm{dBm} / \mathrm{NA} \end{aligned}$	
Option P44, P50 ${ }^{3}$	43 to 44 GHz	-150 dBm/NA	
Option P50 ${ }^{3}$	44 to 46 GHz 46 to 50 GHz	$\begin{aligned} & \hline-150 \mathrm{dBm} / \mathrm{NA} \\ & -148 \mathrm{dBm} / \mathrm{NA} \end{aligned}$	
DANL with Noise Floor Extension (NFE) on			Improvement @ 95 th percentile
mmW (Option 543, 544, 550; preliminary specs)		Preamp Off	Preamp On LNP On ${ }^{2,3}$
Band 0, f > 20 MHz		10 dB	$9 \mathrm{~dB} \quad \mathrm{~N} / \mathrm{A}$
Band 1		6 dB	$5 \mathrm{~dB} \quad 6 \mathrm{~dB}$
Band 2		8 dB	$7 \mathrm{~dB} \quad 8 \mathrm{~dB}$
Band 3		9 dB	$8 \mathrm{~dB} \quad 10 \mathrm{~dB}$
Band 4		7 dB	$6 \mathrm{~dB} \quad 8 \mathrm{~dB}$
Band 5		5 dB	$5 \mathrm{~dB} \quad 5 \mathrm{~dB}$
Band 6		7 dB	$5 \mathrm{~dB} \quad 6 \mathrm{~dB}$
Example of effective DANL Frequency 20 to $30^{\circ} \mathrm{C}$	Preamp Off Preamp On	LNP On ${ }^{2,3}$	
Mid-Band $0(1.8 \mathrm{GHz})$	-162 dBm -172 dBm	N/A	
Mid-Band 1 (5.95 GHz)	-151 dBm - 165 dBm	-158 dBm	
Mid-Band 2 (10.95 GHz)	-152 dBm - 165 dBm	-158 dBm	
Mid-Band 3 (15.3 GHz)	-152 dBm - 165 dBm	-158 dBm	
Mid-Band 4 (21.75 GHz)	-149 dBm -163 dBm	-155 dBm	
Mid-Band 5 (30.4 GHz)	-144 dBm -161 dBm	-151 dBm	
Mid-Band 6 (42.7 GHz)	-139 dBm $\quad-154 \mathrm{dBm}$	-147 dBm	

1. With the NFE (Noise Floor Extension) "Off".
2. LNP (Low Noise Path) requires option LNP.
3. At higher frequency bands (beyond 3.6 GHz), Preamp "On" supersedes "LNP enabled". LNP cannot operate simultaneously with preamp.

Residues, images, and spurious responses				
Residual responses (Input terminated and 0 dB attenuation)	200 kHz to 8.4 GHz Zero span or FFT or other frequencies	$\begin{aligned} & -100 \mathrm{dBm} \\ & -100 \mathrm{dBm} \text { nominal } \end{aligned}$		
	Tuned Freq (f)	Excitation Freq	Response	
Image responses	10 MHz to 26.5 GHz	$\mathrm{f}+45 \mathrm{MHz}$	-80 dBc - 118 dBc typical	
Mixer level at -10 dBm	10 MHz to 3.6 GHz 10 MHz to 3.6 GHz 3.5 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 22 GHz 22 to 26.5 GHz	$\begin{aligned} & \hline \mathrm{f}+10,245 \mathrm{MHz} \\ & \mathrm{f}+645 \mathrm{MHz} \end{aligned}$	-80 dBc -112 dBc typical -80 dBc -101 dBc typical -78 dBc -87 dBc typical -74 dBc -84 dBc typical -70 dBc -82 dBc typical -68 dBc -79 dBc typical	
Other spurious responses First RF order ($\mathrm{f} \geq 10 \mathrm{MHz}$ from carrier) Mixer level at -10 dBm	$-80 \mathrm{dBc}+20 \log \left(\mathrm{~N}^{*}\right)$	Includes IF feedthrough, LO harmonic mixing responses		
Higher RF order ($\mathrm{f} \geq 10 \mathrm{MHz}$ from carrier) Mixer level at -40 dBm	$-80 \mathrm{dBc}+20 \log \left(\mathrm{~N}^{*}\right)$	Includes higher order mixer responses		
LO-related spurious responses ($200 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{MHz}$ from carrier), Mixer level at -10 dBm	$-73 \mathrm{dBc} * *+20 \log \left(\mathrm{~N}^{*}\right)$			
Line-related spurious responses		$-73 \mathrm{dBc}^{* *}+20 \log \left(\mathrm{~N}^{*}\right)$ (nominal)		
Second harmonic distortion (SHI)				
	Source frequency	Mixer level	Distortion***	SHI***
	10 to 100 MHz 0.1 to 1.8 GHz 1.75 to 2.5 GHz 2.5 to 4 GHz 4 to 6.5 GHz 6.5 to 10 GHz 10 to 13.25 GHz	-15 dBm -15 dBm $-15 \mathrm{dBm}$ $-15 \mathrm{dBm}$ $-15 \mathrm{dBm}$ $-15 \mathrm{dBm}$ $-15 \mathrm{dBm}$	$\begin{aligned} & \hline-57 \mathrm{dBc} / \mathrm{NA} \\ & -60 \mathrm{dBc} / \mathrm{NA} \\ & -77 \mathrm{dBc} /-95 \mathrm{dBc} \\ & -77 \mathrm{dBc} /-101 \mathrm{dBc} \\ & -77 \mathrm{dBc} /-105 \mathrm{dBc} \\ & -70 \mathrm{dBc} /-105 \mathrm{dBc} \\ & -62 \mathrm{dBc} /-105 \mathrm{dBc} \end{aligned}$	$\begin{aligned} & \hline+42 \mathrm{dBm} / \mathrm{NA} \\ & +45 \mathrm{dBm} / \mathrm{NA} \\ & +62 \mathrm{dBm} /+80 \mathrm{dBm} \\ & +62 \mathrm{dBm} /+86 \mathrm{dBm} \\ & +62 \mathrm{dBm} /+90 \mathrm{dBm} \\ & +55 \mathrm{dBm} /+90 \mathrm{dBm} \\ & +47 \mathrm{dBm} /+90 \mathrm{dBm} \end{aligned}$
$\begin{aligned} & \text { Preamp on } \\ & \text { (Option P03, P08, P13, P26) } \end{aligned}$		Preamp level	Distortion	SHI
	10 MHz to 1.8 GHz 1.8 to 13.25 GHz	$\begin{aligned} & -45 \mathrm{dBm} \\ & -50 \mathrm{dBm} \end{aligned}$	-78 dBc nominal -60 dBc nominal	+33 dBm nominal +10 dBm nominal
Third-order intermodulation distortion (TOI)				
(two -16 dBm tones at input mixer with tone separation > 5 times IF prefilter bandwidth, 20 to $30^{\circ} \mathrm{C}$)				
		TOI		
	10 to 150 MHz 150 to 600 MHz 0.6 to 1.1 GHz 1.1 to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17 GHz 17 to 26.5 GHz 26.5 to 50 GHz	+13 dBm $+18 \mathrm{dBm}$ $+20 \mathrm{dBm}$ $+21 \mathrm{dBm}$ $+15 \mathrm{dBm}$ $+15 \mathrm{dBm}$ $+11 \mathrm{dBm}$ $+10 \mathrm{dBm}$	+16 dBm typical +21 dBm typical +22 dBm typical +23 dBm typical +22 dBm typical +23 dBm typical +17 dBm typical +17 dBm nominal +13 dBm nominal	
Preamp on (Option P03, P08, P13, P26)				
Tones at preamp input (two -45 dBm) (two -45 dBm) (two -50 dBm)	10 to 500 MHz 500 MHz to 3.6 GHz 3.6 to 26.5 GHz		$\begin{aligned} & +4 \mathrm{dBm} \text { nominal } \\ & +4.5 \mathrm{dBm} \text { nominal } \\ & -15 \mathrm{dBm} \text { nominal } \end{aligned}$	

*: N is the LO multiplication factor. Refer to page 4 for the N value verses frequency ranges.
**: Nominally -40 dBc under large magnetic (0.38 Gauss rms) or vibrational (0.21 g rms) environmental stimuli.
***: Normal path/LNP enabled (requires Option LNP).

Figure 1. Nominal TOI performance versus frequency and tone separation

Figure 2. Third-order dynamic range plots

Nominal Dynamic Range at $13 \mathbf{G H z}$

Phase noise	Offset	Specification	Typical
Noise sidebands	10 Hz		$-75 \mathrm{dBc} / \mathrm{Hz}$ nominal
$\left(20\right.$ to $\left.30^{\circ} \mathrm{C}, \mathrm{CF}=1 \mathrm{GHz}\right)$	100 Hz	$-94 \mathrm{dBc} / \mathrm{Hz}$	$-100 \mathrm{dBc} / \mathrm{Hz}$ typical
	1 kHz	$-121 \mathrm{dBc} / \mathrm{Hz}$	$-125 \mathrm{dBc} / \mathrm{Hz}$ typical
	10 kHz	$-129 \mathrm{dBc} / \mathrm{Hz}$	$-132 \mathrm{dBc} / \mathrm{Hz}$ typical
	30 kHz	$-130 \mathrm{dBc} / \mathrm{Hz}$	$-132 \mathrm{dBc} / \mathrm{Hz}$ typical
	100 kHz	$-129 \mathrm{dBc} / \mathrm{Hz}$	$-131 \mathrm{dBc} / \mathrm{Hz}$ typical
	1 MHz	$-145 \mathrm{dBc} / \mathrm{Hz}$	$-146 \mathrm{dBc} / \mathrm{Hz}$ typical
	10 MHz	$-155 \mathrm{dBc} / \mathrm{Hz}$	$-158 \mathrm{dBc} / \mathrm{Hz}$ typical

Figure 3. Nominal PXA phase noise at various center frequencies

Option MPB, microwave preselector bypass

Frequency range	
N9030A-508	3.6 to 8.4 GHz
N9030A-513	3.6 to 13.6 GHz
N9030A-526	3.6 to 26.5 GHz
N9030A-543	3.6 to 43 GHz
N9030A-544	3.6 to 44 GHz
N9030A-550	3.6 to 50 GHz

[^2]
PowerSuite Measurement Specifications

Channel power			
Amplitude accuracy, W-CDMA or IS95 (20 to $30^{\circ} \mathrm{C}$, attenuation $=10 \mathrm{~dB}$)	$\pm 0.61 \mathrm{~dB}(\pm 0.19 \mathrm{~dB} 95$ th percentile)		
Occupied bandwidth			
Frequency accuracy	\pm [span/1000] nominal		
Adjacent channel power			
Accuracy, 3GPP W-CDMA (ACLR) (at specific mixer levels and ACLR ranges)	Adjacent	Alternate	
MS (UE) BTS	$\begin{array}{r} \pm 0.09 \mathrm{~dB} \\ \pm 0.18 \mathrm{~dB} \\ \hline \end{array}$	$\begin{array}{r} \pm 0.16 \mathrm{~dB} \\ \pm 0.31 \mathrm{~dB} \\ \hline \end{array}$	
Dynamic range (typical)			
Without noise correction	-82.5 dB	-87 dB	
With noise correction	$-83.5 \mathrm{~dB}\left(-88 \mathrm{~dB}{ }^{1}\right)$	-89 dB	
Offset channel pairs measured	1 to 6		
Multi-carrier ACP			
Accuracy, 3GPP W-CDMA (ACPR) (4 carriers, 5 MHz offset, BTS, UUT ACPR range at -42 to -48 dB , optimal mixer level at -21 dBm)	$\pm 0.13 \mathrm{~dB}$		
Multiple number of carriers measured	Up to 12		
Power statistics CCDF			
Histogram resolution	0.01 dB		
Harmonic distortion			
Maximum harmonic number	10th		
Result	Fundamental power (dBm), relative harmonics power (dBc), total harmonic distortion in \%		
Intermod (TOI)	Measure the third-order products and intercepts from two tones		
Burst power			
Methods	Power above threshold, power within burst width		
Results	Single burst output power, average output power, maximum power, minimum power within burst, burst width		
Spurious emission			
3GPP W-CDMA table-driven spurious signals; search across regions			
Dynamic range (1 to 3.6 GHz) Absolute sensitivity (1 to 3.6 GHz)	$\begin{aligned} & 97.1 \mathrm{~dB} \\ & -86.4 \mathrm{dBm} \end{aligned}$	(101.9 dB typical) (-90.4 dBm typical)	
Spectrum emission mask (SEM)			
cdma2000 ${ }^{\circledR}$ (750 kHz offset) Relative dynamic range Absolute sensitivity Relative accuracy	$\begin{aligned} & 81.6 \mathrm{~dB} \\ & -101.7 \mathrm{dBm} \\ & \pm 0.08 \mathrm{~dB} \end{aligned}$	(86.4 dB typical) (-105.7 dBm typical)	
3GPP W-CDMA (2.515 MHz offset) Relative dynamic range Absolute sensitivity Relative accuracy	$\begin{aligned} & 85.4 \mathrm{~dB} \\ & -101.7 \mathrm{dBm} \\ & \pm 0.08 \mathrm{~dB} \end{aligned}$	(89.8 dB typical) (-105.7 dBm typical)	
Nominal value base on hand-measured results from region.	rly production units.	ions were done near $2 G$	he common W-CDMA operating

General Specifications

Temperature range

Operating Storage	0 to $55^{\circ} \mathrm{C}$ -40 to $+65{ }^{\circ} \mathrm{C}$
Altitude	
	4,500 meters (approx 14,760 feet)
EMC	

Complies with European EMC Directive 2004/108/EC

- IEC/EN 61326-1 or IEC/EN 61326-2-1
- CISPR Pub 11 Group 1, class A ${ }^{1}$
- AS/NZS CISPR 11:2002
- ICES/NMB-001

This ISM device complies with Canadian ICES-001
Cet appareil ISM est conforme à la norme NMB-001 du Canada

Safety

Complies with European Low Voltage Directive 73/23/EEC, amended by 93/68/EEC

- IEC/EN 61010-1 2nd Edition
- Canada: CSA C22.2 No. 61010-1
- USA: UL 61010-1 2nd Edition

Acoustic noise	
Acoustic noise emission	Geraeuschemission
LpA $<70 \mathrm{~dB}$	Am Arbeitsplatz
Operator position	Normaler Betrieb
Normal position	Nach DIN 45635 t. 19
Per ISO 7779	Nominally under 55 dBA Sound Pressure. 55 dBA is generally considered suitable for use in quiet office environment
Acoustic noise - more information	Nominally under 65 dBA Sound Pressure. 65 dBA is generally considered suitable for use in noisy office environment
Ambient temperature $<40^{\circ} \mathrm{C}$	
$\geq 40^{\circ} \mathrm{C}$	

Environmental stress

Samples of this product have been type tested in accordance with the Agilent Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation, and end-use; those stresses include, but are not limited to, temperature, humidity, shock, vibration, altitude, and power line conditions; test methods are aligned with IEC 60068-2 and levels are similar to MILPRF-28800F Class 3.

Power requirements	
Voltage and frequency (nominal)	100 to $120 \mathrm{~V}, 50 / 60 / 400 \mathrm{~Hz}$
	220 to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Power consumption	
On	450 W (fully loaded with options)
Stanby	40 W

1. The N9030A is in full compliance with CISPR 11, Class A emissions and is declared as such. In addition, the N9030A has been type tested and shown to meet CISPR 11, Class B emissions limits. Information regarding the Class B emission performance of the N9030A is provided as a convenience to the user and is not intended to be a regulatory declaration.

Inputs and Outputs

Front panel	
RF input Connector Standard (Option 503, 508, 513, 526) Option C35 (w/ Option 526 only) Standard (Option 543, 544, 550)	Type-N female, 50Ω nominal APC 3.5 mm male, 50Ω nominal 2.4 mm male, 50Ω nominal
Probe power Voltage/current	$+15 \mathrm{Vdc}, \pm 7 \%$ at 150 mA max nominal $-12.6 \mathrm{Vdc}, \pm 10 \%$ at 150 mA max nominal
USB 2.0 ports Master (2 ports) Standard Connector Output current	Compatible with USB 2.0 USB Type-A female 0.5 A nominal
Headphone jack	Miniature stereo audio jack (3.5 mm , also known as " $1 / 8$ inch")
Rear panel	
10 MHz out Connector Output amplitude Frequency	BNC female, 50Ω nominal $\geq 0 \mathrm{dBm}$ nominal $10 \mathrm{MHz}+(10 \mathrm{MHz}$ x frequency reference accuracy)
Ext Ref In Connector Input amplitude range Input frequency Frequency lock range	BNC female, 50Ω nominal -5 to 10 dBm nominal 1 to 50 MHz nominal (selectable to 1 Hz resolution) $\pm 5 \times 10^{-6}$ of specified external reference input frequency
Trigger 1 and 2 inputs Connector Impedance Trigger level range	BNC female $>10 \mathrm{k} \Omega$ nominal -5 to +5 V (TTL) factory preset
Trigger 1 and 2 outputs Connector Impedance Level	BNC female 50Ω nominal 0 to 5 V (CMOS) nominal
Sync (reserved for future use) Connector	BNC female
Monitor output Connector Format Resolution	VGA compatible, 15 -pin mini D-SUB XGA (60 Hz vertical sync rates, non-interlaced) Analog RGB 1024×768
Noise source drive +28 V (pulsed) Connector Output voltage	BNC female On $28.0 \pm 0.1 \mathrm{~V}$ (60 mA maximum) Off < 1 V
SNS series noise source	For use with the Agilent Technologies SNS Series noise sources
Digital bus (reserved for future use) Connector	MDR-80

Rear panel	
Analog out Connector	BNC female
USB 2.0 ports Master (4 ports) Standard Connector Output current Slave (1 port) Standard Connector Output current	Compatible with USB 2.0 USB Type-A female 0.5 A nominal Compatible with USB 2.0 USB Type-B female 0.5 A nominal
GPIB interface Connector GPIB codes GPIB mode	IEEE-488 bus connector SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3, C28, DT1, L4, C0 Controller or device
LAN TCP/IP interface Standard Connector	1000Base-T RJ45 Ethertwist
IF output Connector Impedance	SMA female, shared by Opts CR3, CRP, and ALV 50Ω nominal
2nd IF output, Option CR3	
```Center frequency SA mode or I/Q analyzer with IF BW \(\leq 25 \mathrm{MHz}\) with Option B40 with Option B1X```	$\begin{aligned} & 322.5 \mathrm{MHz} \\ & 250 \mathrm{MHz} \\ & 300 \mathrm{NHz} \end{aligned}$
Conversion gain	-1 to +4 dB (nominal) plus RF frequency response
Bandwidth   Low band High band, with preselector High band, with preselector bypassed ${ }^{1}$	Up to 140 MHz (nominal) Depends on center frequency Up to 700 MHz
Arbitrary IF output, Option CRP	
Center frequency Range Resolution	10 to 75 MHz (user selectable) 0.5 MHz $0.5 \mathrm{MHz}$
Conversion gain	-1 to +4 dB (nominal) plus RF frequency response
Bandwidth   Output at 70 MHz   Low band or high band with preselector bypassed Preselected band	100 MHz (nominal)   Depends on RF center frequency
Lower output frequencies	Subject to folding
Residual output signals	$\leq-88 \mathrm{dBm}$ (nominal)

## I/O Analyzer

Frequency					
Frequency span   Standard instrument   Option B25   Option B40   Option B1X	10 Hz to 10 MHz 10 Hz to 25 MHz 10 Hz to 40 MHz 10 Hz to 140 MHz				
Resolution bandwidth (spectrum measurement)					
Range Overall Span $=1 \mathrm{MHz}$ Span $=10 \mathrm{kHz}$ Span $=100 \mathrm{~Hz}$ Window shapes	100 mHz to 3 MHz   50 Hz to 3 MHz   1 Hz to 10 kHz   100 mHz to 100 Hz   Flat Top, Uniform, Ha   (K-B 70 dB, K-B 90	ning, Hammi and K-B 110	ussian, Black	Blackman-H	Kaiser Bessel
Analysis bandwidth (waveform measurement)					
Standard instrument   Option B25   Option B40   Option B1X	10 Hz to 10 MHz 10 Hz to 25 MHz 10 Hz to 40 MHz 10 Hz to 140 MHz				
IF frequency response (standard $10 \mathrm{MHz} \mathrm{IF} \mathrm{path)}$					
IF frequency response (demodulation and FFT response relative to the center frequency)					
Freq (GHz)	Analysis BW (MHz)	Max error	Midwidth error (95th percentile)	Slope (dB/ MHz) (95th percentile)	RMS (nominal)
$\begin{aligned} & \leq 3.6 \\ & 3.6 \text { to } 26.5 \\ & 3.6 \text { to } 26.5 \end{aligned}$	$\begin{aligned} & \leq 10 \\ & \leq 10 \text { preselected } \\ & \leq 10 \text { preselector off }^{1} \end{aligned}$	$\begin{aligned} & \pm 0.20 \mathrm{~dB} \\ & \pm 0.20 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 0.12 \mathrm{~dB} \\ & \pm 0.12 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 0.10 \mathrm{~dB} \\ & \pm 0.10 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 0.02 \mathrm{~dB} \\ & 0.2 \mathrm{~dB} \\ & 0.2 \mathrm{~dB} \end{aligned}$
IF phase linearity					
Center freq (GHz)	Span (MHz)	Preselector	Peak-to-pea (nominal)		RMS (nominal)
$\begin{aligned} & \geq 0.02,<3.6 \\ & \geq 3.6 \text { to } \leq 26.5 \\ & \geq 3.6 \text { to } \leq 26.5 \end{aligned}$	$\begin{aligned} & \leq 10 \\ & \leq 10 \\ & \leq 10 \end{aligned}$	NA Off ${ }^{1}$ On	$\begin{aligned} & 0.06^{\circ} \\ & 0.08^{\circ} \\ & 0.09^{\circ} \end{aligned}$		$\begin{aligned} & 0.012^{\circ} \\ & 0.018^{\circ} \\ & 0.019^{\circ} \end{aligned}$
Dynamic range (standard 10 MHz IF path)					
Clipping-to-noise dynamic range				Excluding r responses	and spurious
Clipping level at mixer IF gain = Low IF gain = High	$\begin{aligned} & -10 \mathrm{dBm} \\ & -20 \mathrm{dBm} \end{aligned}$			$\begin{aligned} & \text { Center frequ } \\ & -8 \mathrm{dBm} \text { non } \\ & -17.5 \mathrm{dBm} \end{aligned}$	$\geq 20 \mathrm{MHz}$
Noise density at mixer at center frequency	(DANL + IF Gain effect) + 2.25 dB				
Data acquisition (standard 10 MHz IF path)					
Time record length					
Complex spectrum	131,072 samples (max)		Res BW $\sim 540 \mathrm{~Hz}$ for 10 MHz (standard) span		
Waveform	4,000,000 samples (max) ${ }^{2}$		$4,000,000$ samples $\sim 335 \mathrm{~ms}$ at 10 MHz span		
Sample rate	$100 \mathrm{MSa} / \mathrm{s}$				
ADC resolution	16 Bits		For 10 MHz (standard) span		
Option MPB is installed and enabled   For deep capture, we recommend the	of the 89600 B vector signa	analysis (VSA)	re or the N9064		

## I/O Analyzer (continued)

Option B25 25 MHz analysis bandwidth (Option B25 is automatically included in Option 40 or B1X)

IF frequency response (B25 IF path)					
IF frequency response (demodulation and FFT response relative to the center frequency)					
Freq (GHz)	Analysis BW (MHz)	Max error	Midwidth error (95th percentile)	Slope (dB/ MHz) (95th percentile)	RMS (nominal)
< 3.6	10 to $\leq 25$	$\pm 0.30 \mathrm{~dB}$	$\pm 0.12 \mathrm{~dB}$	$\pm 0.05 \mathrm{~dB}$	0.02 dB
3.6 to 26.5	$10 \text { to } \leq 25$   preselected				
3.6 to 26.5	10 to $\leq 25$ preselector off ${ }^{1}$	$\pm 0.30 \mathrm{~dB}$			0.015 dB
IF phase linearity					
Center freq (GHz)	Span (MHz)	Preselector	Peak-to-peak (nominal)		RMS (nominal)
$\geq 0.02,<3.6$	$\leq 25$	NA	$0.14{ }^{\circ}$		$0.028^{\circ}$
$\geq 3.6$ to $\leq 26.5$	$\leq 25$	Off ${ }^{1}$	$0.25{ }^{\circ}$		$0.043{ }^{\circ}$
Dynamic range (B25 IF path)					
Full scale (ADC clipping)					
Default settings, signal at CF (IF gain = Low)					
High gain setting, signal at CF (IF gain = High)					
Effect of signal frequency $\neq$ CF	Up to $\pm 3 \mathrm{~dB}$ nominal				
IF spurious responses (preamp off)					
IF second harmonic      Apparent freq. Excitation freq. Mixer level IF gain					
Any on-screen f	$\left(\mathrm{f}+\mathrm{f}_{\mathrm{c}}+22.5 \mathrm{MHz}\right) / 2$	$\begin{aligned} & -15 \mathrm{dBm} \\ & -25 \mathrm{dBm} \end{aligned}$	Low   High	$\begin{aligned} & -54 \mathrm{dBc} \text { nor } \\ & -54 \mathrm{dBc} \text { nor } \end{aligned}$	
IF conversion image   Any on-screen f	$2 \times \mathrm{f}_{\mathrm{c}}-\mathrm{f}+45 \mathrm{MHz}$	$\begin{aligned} & -10 \mathrm{dBm} \\ & -20 \mathrm{dBm} \end{aligned}$	Low   High	-70 dBc no   -70 dBc no	
Data acquisition (B25 IF path)					
Time record length   Complex spectrum   Waveform   Sample rate ADC resolution	131,072 samples (max) 4,000,000 samples (M 100 MSa /s 16 Bits		$\begin{aligned} & \text { Res BW ~90 } \\ & 4,000,000 \text { sar } \end{aligned}$	for 25 MHz (s	rd) span z span
Option MPB is installed and ena   For deep capture, we recommen	of the 89600 vector signa	analysis (VSA)	are or the N9064A		

## I/O Analyzer (continued)

Option B40 40 MHz analysis bandwidth (Option B40 is automatically included in Option B1X)

IF frequency response (B40 IF path)					
IF frequency response				Relative to center frequency	
Center freq. (GHz)	Span (MHz)	Preselector		Typical	RMS (nominal)
$\geq 0.03,<3.6$	$\leq 40$	NA	$\pm 0.4 \mathrm{~dB}$	$\pm 0.25 \mathrm{~dB}$	0.05 dB
$\geq 3.6, \leq 8.4$	$\leq 40$	Off ${ }^{1}$	$\pm 0.4 \mathrm{~dB}$	$\pm 0.16 \mathrm{~dB}$	0.05 dB
$>8.4, \leq 26.5$	$\leq 40$	Off ${ }^{1}$	$\pm 0.6 \mathrm{~dB}$	$\pm 0.20 \mathrm{~dB}$	0.1 dB
IF phase linearity (deviation from mean phase linearity)					
Center freq (GHz)	Span (MHz)	Preselector		Peak-to-peak (nominal)	RMS (nominal)
$\geq 0.03,<3.6$	$\leq 40$	NA		$0.06{ }^{\circ}$	$0.012^{\circ}$
$\geq 3.6, \leq 26.5$	$\leq 40$	Off ${ }^{1}$		$0.30{ }^{\circ}$	$0.08{ }^{\circ}$
EVM (EVM measurement floor for an 802.11 g OFDM signal, using 89600B software equalization, channel estimation and data EC)					
2.4 GHz   6.0 GHz with Option MPB				$-49.9 \mathrm{~dB}(0.32 \%)$ nominal$-49.9 \mathrm{~dB}(0.32 \%)$ nominal	
Dynamic range (B40 IF path)					
SFDR   (Spurious-free dynamic range)					
Signal frequency within $\pm 12 \mathrm{MHz}$ of center	-80 dBc nominal				
Signal frequency anywhere within analysis BW					
Spurious response within $\pm 18 \mathrm{MHz}$ of center	-79 dBc nominal				
Response anywhere within analysis BW	-77 dBc nominal				
Full scale (ADC clipping)					
Default settings, signal at CF (IF gain = Low: IF gain offset = 0 dB )					
Band 0   Bands 1 through 4	-8 dBm mixer level nominal				
	-7 dBm mixer level nominal				
High gain setting, signal at CF (IF gain $=$ High $)$					
Band 0   Bands 1 through 4	-18 dBm mixer level nominal, subject to gain limitations				
	-17 dBm mixer level nominal, subject to gain limitations				
Effect of signal frequency $\neq$ CF	Up to $\pm 3 \mathrm{~dB}$ nominal				
Spurious responses (Preamp off) Residual responses	-100 dBm nominal				
Image responses (preselector on)	Tune freq (f)	Excitation freq	Mixer level	Response	
	10 MHz to 3.6 GHz	$\mathrm{f}+10,100 \mathrm{MHz}$	$-10 \mathrm{dBm}$	-80 dBc	
	10 MHz to 3.6 GHz	$\mathrm{f}+500 \mathrm{MHz}$	$-10 \mathrm{dBm}$	-80 dBc	
	3.5 to 13.6 GHz	$\mathrm{f}+500 \mathrm{MHz}$	$-10 \mathrm{dBm}$	-78 dBc	
	13.5 to 17.1 GHz	$\mathrm{f}+500 \mathrm{MHz}$	$-10 \mathrm{dBm}$	$-74 \mathrm{dBc}$	
	17.0 to 22 GHz	$\mathrm{f}+500 \mathrm{MHz}$	$-10 \mathrm{dBm}$	-70 dBc	
	22 to 26.5 GHz	$\mathrm{f}+500 \mathrm{MHz}$	$-10 \mathrm{dBm}$	$-68 \mathrm{dBc}$	

[^3]
## I/Q Analyzer (coninued)

Option B40 40 MHz analysis bandwidth

Other spurious responses			
First RF Order ( $\mathrm{f} \geq 10 \mathrm{MHz}$ from carrier)		-10 dBm	$-80 \mathrm{dBc}+20 \times\left(\log \mathrm{N}^{1}\right)$
Higher RF Order ( $\mathrm{f} \geq 10 \mathrm{MHz}$ from carrier)		-40 dBm	$-78 \mathrm{dBc}+20 \times\left(\log \mathrm{N}^{1}\right)$
LO-related spurious responses (Offset from carrier 200 Hz to 10 MHz )		-10 dBm	$-73 \mathrm{dBc}^{2}+20 \times\left(\log \mathrm{N}^{1}\right)$ nominal
Line-related spurious responses			$-73 \mathrm{dBc}^{2}+20 \times\left(\log \mathrm{N}^{1}\right)$ nominal
IF residual responses   Band 0   Band 1, preselector bypassed (Option MPB)			-92 dBfs nominal   -87 dBfs nominal
Third order intermodulation distortion (two tones of equal level at $-9 \mathrm{dBfs}, 1 \mathrm{MHz}$ tone separation, IF gain = Low, IF gain offset $=0 \mathrm{~dB}$, preselector bypassed (Option MPB) in bands 1 through 4)			
Band 0   Band 1   Band 2   Band 3   Band 4			-83 dBc nominal -83 dBc nominal -82 dBc nominal -75 dBc nominal -67 dBc nominal
Noise density ( 0 dB attenuation; preselector bypassed (Option MPB); IF gain = Low/High; center of IF bandwidth)			
Band 0   Band 1   Band 2   Band 3   Band 4	$\begin{aligned} & 1.80 \mathrm{GHz} \\ & 5.95 \mathrm{GHz} \\ & 10.95 \mathrm{GHz} \\ & 15.30 \mathrm{GHz} \\ & 21.75 \mathrm{GHz} \end{aligned}$	$-144 \mathrm{dBm} / \mathrm{Hz}$    $-140 \mathrm{dBm} / \mathrm{Hz}$ $-148 \mathrm{dBm} / \mathrm{HBm}$   $-141 \mathrm{dBm} / \mathrm{Hz}$ $-150 \mathrm{dBm} /$   $-135 \mathrm{dBm} / \mathrm{Hz}$ $-145 \mathrm{dBm} /$   $-133 \mathrm{dBm} / \mathrm{Hz}$ -144 dBm	minal, preselector on, IF gain = Low
Data acquisition (B40 IF path)			
Time record length IO analyzer	4,000,000 IQ sample pairs		
89600 VSA or N9064A VXA Length (IO sample pairs) Length (Time)	32-bit data packing $536 \mathrm{MSa}\left(2^{29} \mathrm{Sa}\right)$	64-bit data packing $268 \mathrm{MSa}\left(2^{28} \mathrm{Sa}\right)$	2 GB total memory   Sample/(Span x 1.28)
Sample rate   At ADC   IO pairs ADC resolution	200 MSa /s   12 Bits		Span $\times 1.28$

1. $N$ is the $L O$ multiplication factor.
2. Nominally -40 dBc under large magnetic ( 0.38 Gauss $R M S$ ) or vibrational ( $0.21 \mathrm{~g} R M S$ ) environmental stimuli.

## I/O Analyzer (continued)

Option B1X 140 MHz analysis bandwidth

IF frequency response (B1X IF path)					
IF frequency response				Relative to center frequency	
Center freq. (GHz)	Span (MHz)	Preselector		Typical	RMS (nominal)
$\geq 0.03,<3.6$	$\begin{aligned} & \leq 80 \\ & \leq 140 \end{aligned}$	NA NA	$\pm 0.73 \mathrm{~dB}$	$\begin{aligned} & \pm 0.15 \mathrm{~dB} \\ & \pm 0.25 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 0.05 \mathrm{~dB} \\ & 0.05 \mathrm{~dB} \end{aligned}$
$\geq 3.6, \leq 8.4$	$\begin{aligned} & \leq 80 \\ & \leq 140 \end{aligned}$	$\begin{aligned} & \text { Off }{ }^{1} \\ & \text { Off }{ }^{1} \end{aligned}$	$\pm 0.73 \mathrm{~dB}$	$\begin{aligned} & \pm 0.2 \mathrm{~dB} \\ & \pm 0.30 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 0.05 \mathrm{~dB} \\ & 0.05 \mathrm{~dB} \end{aligned}$
> 8.4, $\leq 26.5$	$\begin{aligned} & \leq 80 \\ & \leq 140 \end{aligned}$	$\begin{aligned} & \hline \text { Off }^{1} \\ & \text { Off } \end{aligned}$	$\pm 0.9 \mathrm{~dB}$	$\begin{aligned} & \pm 0.4 \mathrm{~dB} \\ & \pm 0.75 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \hline 0.1 \mathrm{~dB} \\ & 0.1 \mathrm{~dB} \end{aligned}$
IF phase linearity (deviation from mean phase linearity)					
Center freq (GHz)	Span (MHz)	Preselector		Peak-to-peak (nominal)	RMS (nominal)
$\geq 0.03,<3.6$	$\leq 140$	NA		$0.03{ }^{\circ}$	$0.004{ }^{\circ}$
$\geq 3.6, \leq 26.5$	$\leq 140$	Off ${ }^{1}$		$1.2^{\circ}$	$0.2^{\circ}$
EVM (EVM measurement floor)	Customized settings required, preselector bypassed (0ption MPB) above Band 0				
Case 1: $62.5 \mathrm{Msymbol} / \mathrm{s}$, 160AM signal, RRC filter alpha of 0.2 , non-equalized, with approximately 75 MHz occupied bandwidth					
Band 0, 1.8 GHz   Band 1, 5.95 GHz	$0.8 \%$ nominal   1.1 \% nominal				
Case 2: 104.167 Msymbol/s, 160AM signal, RRC filter alpha of 0.35 , non-equalized, with approximately 140 MHz occupied bandwidth					
$\begin{aligned} & \text { Band } 1,5.95 \mathrm{GHz} \\ & \text { Band } 2,15.3 \mathrm{GHz} \\ & \text { Band } 4,26 \mathrm{GHz} \end{aligned}$	$3.0 \%$ nominal, (unequalized) $0.5 \%$ nominal, (equalized)   $2.5 \%$ nominal, (unequalized) $0.6 \%$ nominal, (equalized)   $3.5 \%$ nominal, (unequalized) $1.6 \%$ nominal, (equalized)				
Dynamic range (B1X IF path)					
SFDR (Spurious-free dynamic range)					
Signal frequency within $\pm 12 \mathrm{MHz}$ of center	-75 dBc nominal				
Signal frequency anywhere within analysis BW					
Spurious response within $\pm 63 \mathrm{MHz}$ of center	-74 dBc nominal				
Response anywhere within analysis BW	-72 dBc nominal				
Full scale (ADC clipping)					
Default settings, signal at CF (IF gain = Low: IF gain offset $=0 \mathrm{~dB}$ )					
High gain setting, signal at CF (IF gain $=$ High)					
Effect of signal frequency $\neq C \mathrm{CF}$	Up to $\pm 3 \mathrm{~dB}$ nominal				

[^4]
## I/Q Analyzer (coninued)

Option B1X 140 MHz analysis bandwidth

Spurious responses (preamp off)				
Residual responses				-100 dBm nominal
Image responses (preselector on)				
	Tune freq (f)	Excitation freq	Mixer level	Response
	10 MHz to 3.6 GHz 10 MHz to 3.6 GHz 3.5 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 22 GHz 22 to 26.5 GHz	$\begin{aligned} & \mathrm{f}+10,200 \mathrm{MHz} \\ & \mathrm{f}+500 \mathrm{MHz} \end{aligned}$	$-10 \mathrm{dBm}$   $-10 \mathrm{dBm}$ $-10 \mathrm{dBm}$ $-10 \mathrm{dBm}$ $-10 \mathrm{dBm}$ $-10 \mathrm{dBm}$	$-80 \mathrm{dBc}$   $-80 \mathrm{dBc}$   $-78 \mathrm{dBc}$   $-74 \mathrm{dBc}$   $-70 \mathrm{dBc}$   $-68 \mathrm{dBc}$
Other spurious responses				
First RF Order ( $\mathrm{f} \geq$ First RF order 10 MHz from carrier)	$-10 \mathrm{dBm}$	$-80 \mathrm{dBc}+20 \times\left(\log \mathrm{N}^{1}\right)$		
Higher RF Order ( $\mathrm{f} \geq$ First RF order 10 MHz from carrier)	$-40 \mathrm{dBm}$	$-78 \mathrm{dBc}+20 \times\left(\log \mathrm{N}^{1}\right)$		
LO-related spurious responses   (Offset from carrier 200 Hz to 10 MHz )	-10 dBm	$-73 \mathrm{dBc}^{2}+20 \mathrm{x}\left(\log \mathrm{N}^{1}\right)$ nominal		
Line-related spurious responses		$-73 \mathrm{dBc}^{2}+20 \times\left(\log \mathrm{N}^{1}\right)$ nominal		
Third order intermodulation distortion (two tones of equal level at $-9 \mathrm{dBfs}, 1 \mathrm{MHz}$ tone separation, IF gain = Low, IF gain offset = 0 dB , preselector bypassed (Option MPB) in bands 1 through 4)				
Band 0   Band 1   Band 2   Band 3   Band 4	-82 dBc nominal -82 dBc nominal -80 dBc nominal -80 dBc nominal -74 dBc nominal			
Noise density ( 0 dB attenuation; preselector bypassed (Option MPB); center of IF bandwidth)				
	Freq (GHz)	IF gain = Low	IF gain $=\mathrm{Hig}$	
Band 0   Band 1   Band 2   Band 3   Band 4	1.80 5.95 10.95 15.30 21.75	$\begin{aligned} & -149 \mathrm{dBm} / \mathrm{Hz} \\ & -145 \mathrm{dBm} / \mathrm{Hz} \\ & -144 \mathrm{dBm} / \mathrm{Hz} \\ & -139 \mathrm{dBm} / \mathrm{Hz} \\ & -136 \mathrm{dBm} / \mathrm{Hz} \end{aligned}$	$\begin{aligned} & -151 \mathrm{dBm} / \mathrm{H} \\ & -146 \mathrm{dBm} / \mathrm{H} \\ & -145 \mathrm{dBm} / \mathrm{H} \\ & -139 \mathrm{dBm} / \mathrm{H} \\ & -136 \mathrm{dBm} / \mathrm{H} \end{aligned}$	
Data acquisition (B1X IF path)				
Time record length IO analyzer	4,000,000 IO sample pairs			
89600 VSA or N9064A VXA Length (IO sample pairs) Length (Time)	32-bit data packing $536 \mathrm{MSa}\left(2^{29} \mathrm{Sa}\right)$	64-bit data packing $268 \mathrm{MSa}\left(2^{28} \mathrm{Sa}\right)$	2 GB total memory   Sample/(Span x 1.28)	
Sample rate   At ADC   10 pairs ADC resolution	400 MSa /s   14 Bits		Span $\times 1.28$	

[^5]
## Other Optional Output

Option ALV Log video out
\(\left.\begin{array}{|ll|}\hline General port specifications \& <br>
\hline Connector \& SMA female <br>
Impedance \& <br>

\hline Fast log video output \& 50 \Omega nominal\end{array}\right]\)| Output voltage | Open-circuit voltages shown |
| :--- | :--- |
| Maximum | 1.6 V at -10 dBm nominal |
| Slope | $25 \pm 1 \mathrm{mV} / \mathrm{dB}$ nominal |
| Log fidelity |  |
| Range | 57 dB nominal |
| Accuracy within range | $\pm 1.0 \mathrm{~dB}$ nominal |
| Rise time | 15 ns nominal |
| Fall time |  |
| Bands $1-4$ with Option MPB | 40 ns nominal best case, |
| Other cases | Depends on bandwidth |

## Other Optional Output

Option YAV Y-Axis output

General port specifications	
Connector Impedance	SMA female Shared with other options   $50 \Omega$ nominal
Screen video	
Operating conditions Display scale types Log scales Modes Gating	Log or Lin "Lin" is linear in voltage   All ( 0.1 to $20 \mathrm{~dB} /$ div)   Spectrum analyzer only   Gating must be off
Output scaling Offset Gain accuracy	0 to 1.0 V open circuit, representing bottom to top of screen   $\pm 1 \%$ of full scale nominal   $\pm 1 \%$ of output voltage nominal
Delay between RF input to analog output	$71.7 \mu \mathrm{~s}+2.56 / \mathrm{RBW}+0.159 / \mathrm{VBW}$ nominal
Log video (Log envelope) output	
Amplitude range (terminated with $50 \Omega$ )	
Maximum	1.0 V nominal for -10 dBm at the mixer
Scale factor   Bandwidth   Operating conditions	1 V per 192.66 dB   Set by RBW   Select Sweep Type = Swept
Linear video (AM Demod) output	
Amplitude range (terminated with $50 \Omega$ )	
Maximum Minimum	1.0 V nominal for signal envelope at the reference level 0 V
Scale factor	If carrier level is set to half the reference level in volts, the scale factor is $200 \%$ of carrier level per volt. Regardless of the carrier level, the scale factor is $100 \%$ of reference level per volt.
Bandwidth Operating conditions	Set by RBW   Select Sweep Type = Swept

## Related Literature

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:
www.agilent.com/find/contactus
Americas

Canada	$(877) 8944414$
Brazil	$(11) 41973500$
Mexico	018005064800
United States	$(800) 8294444$

## Asia Pacific

Australia	1800629485
China	8008100189
Hong Kong	800938693
India	1800112929
Japan	$0120(421) 345$
Korea	0807690800
Malaysia	1800888848
Singapore	18003758100
Taiwan	0800047866
Other AP Countries	$(65) 3758100$

Europe \& Middle East

## LxI

## www.lxistandard.org

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.

## Agilent Channel Partners

 uwwagilent.com/find/channelpartnersGet the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.
cdma $2000^{\circledR}$ is a registered certification mark of the Telecommunications Industry Association. Used under license.
Agilent
Advantage
Services
Agilent Advantage Services is committed
to your success throughout your equip-
ment's lifetime. We share measurement
and service expertise to help you create
the products that change our world. To
keep you competitive, we continually invest
in tools and processes that speed up
calibration and repair, reduce your cost
of ownership, and move us ahead of your
development curve.
www.agilent.com/find/advantageservices

KEMACertified
1SO 9001:2008
www.agilent.com/quality

Belgium	$32(0) 24049340$
Denmark	4570131515
Finland	358 (0) 108552100
France	$0825010700^{*}$
	*0.125 €/minute
Germany	$49(0) 70314646333$
Ireland	1890924204
Israel	$972-3-9288-504 / 544$
Italy	390292608484
Netherlands	31 (0) 20 547 2111
Spain	$34(91) 6313300$
Sweden	$0200-882255$
United Kingdom	44 (0) 118 9276201
For other unlisted countries:	
www.agilent.com/find/contactus	
Revised: october 14, 2010	

Product specifications and descriptions in this document subject to change without notice.
© Agilent Technologies, Inc. 2011
Printed in USA, April 18, 2011
5990-3952EN

## Agilent Technologies


[^0]:    1. Horizontal resolution is span/(sweep points -1 ).
[^1]:    1. Below 100 kHz , only 95th percentile (approx. $2 \sigma$ ) value for frequency response is provided.
[^2]:    1. When Option MPB is installed and enabled, some aspects of the analyzer performance change. Please refer to the PXA specification guide for more details.
[^3]:    1. Option MPB is installed and enabled.
[^4]:    1. Option MPB is installed and enabled.
[^5]:    1. $N$ is the $L O$ multiplication factor.
    2. Nominally -40 dBc under large magnetic ( 0.38 Gauss $R M S$ ) or vibrational ( 0.21 g RMS) environmental stimuli.
